Sharks, skeletons and spectral imaging: Exploring the hidden life of chondrocytes and tessellated cartilage

Mason Dean¹, Júlia Chaumel¹, Maria Marsal², Michael Blumer³, Emilio Gualda², Mélanie Debiais-Thibaud⁴

¹ Max Planck Institute, Potsdam, Germany; ² ICFO Barcelona, Spain; ³ Medizinische Universität, Innsbruck, Austria; ⁴ University of Montpellier

PID: 2358 - Morphology and structure of chondrocytes and their association with mineralizing tissues in shark and ray cartilage

<u>User</u>: **Mason Dean**, Max Planck Institute of Colloids & Interfaces, Berlin, Germany

RI 1: EMBRC Oceanographic Observatory Banyuls-sur-Mer, France

RI 2: EuBI ICFO, Super Resolution Node, Barcelona, Spain - Maria Marsal et al

Founded 1992

Markus Antonietti (Colloid Chemistry) Reinhard Lipowsky (Theory & Bio-Systems) Helmuth Möhwald (Interfaces; until 2013)

Since 2003

Peter Fratzl (Biomaterials)

Since 2008

Peter Seeberger (Biomolecular Systems)

Since 2014 – W2 Max Planck Group

Kerstin Blank (Mechano-bio-chemistry)

External members:

Jürgen Rabe (HU Berlin - Physics) Ulrich S. Schubert (FSU Jena - Chemistry) Joanna Aizenberg (Harvard U – SEAS)

Biological Materials Sciences

Engineering world

Use materials science concepts to describe phenomena in biological systems

Use diversity of naturally evolved material systems as inspiration for engineering

Natural World

Biological materials

Department of Biomaterials

Sensory biomaterials

Yael Politi

Cécile Bidan

Bacterial biofilms

Emanuel Schneck

Water biomolecule interaction

Hierarchical materials

Wolfgang Wagermaier

Michaela Eder

Mason Dean

Mechanobiology

Richard Weinkamer

Amaia Cipitria

Extracellular matrix in disease & regeneration

Material quality in osteoporosis, Genetic bone diseases, regeneration

Cartilage is...

Cartilage is stubborn.

Nature 533, 86-89, 2016

Current Biology 26, R667-R668, 2016

Cartilage is fickle.

Can shark cartilage be developed as a model for cartilage biology? ...skeletal mineralization? ...chondrocyte longevity?

Experience with CORBEL joint service provision

Biological context

Material & structural characterization

Animal collection & care

Tissue prep & histology

Light microscopy

Label-free microscopy

Development of a live cell staining and imaging protocol for tissues collected in Portugal and imaged in Spain France!

Mediterranean Pyrenees

Observatoire Océanologique de Banyuls – sur – Mer

Observatoire Océanologique de Banyuls – sur – Mer

Aquarium Laboratories

Raja clavata

Raja clavata

Raja clavata

Comparative Cartilage Biology

Conference, June 24-26 2019

https://ccbconference.wixsite.com/ccb2019

http://sln.icfo.eu/

label-free imaging modalities

- Hyperspectral Laser Scanning Confocal Microscopy
- multiphoton
 approaches (TwoPhoton Excited
 Fluorescence
 (TPEF) and Second
 Harmonic
 Generation (SHG)

Autofluorescence (AF)

AF is emission of light when biological samples are excited with a proper wavelength, due
to the presence of intrinsic molecules acting as endogenous fluorophores

Natural fluorophores

- Metabolic states
- pathologies

 there is a strict relationship between the AF and the morphofunctional properties of biological tissues

- ✓ Diagnostic information in situ
- √ Non-invasive or minimally invasive
- ✓ No need of tissue removal
- ✓ No exogenous markers

AF detection and data interpretation

1. Current instrumentation for detection

Multispectral imaging with Leica SP8 confocal microscope: White light laser + SP (spectral) detector

Adapted from Leica microsystems

White light laser 470-670nm, 1nm spectral resolution

The SP detector is a multi-band detection system. Every slit transmits the desired wavelength band for the different channels

AF detection and data interpretation

2. Analytical procedures (mathematical algorithms)

(Gómez-Sánchez et al., 2020 submitted)

Autofluorescence of a rice leaf crosssection analysed by Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS)

Distribution of components are shown in false color:

- vesicles (yellow),
- lignin A (red),
- lignin B (blue)
- and chlorophyll (green)

Image acquired in ICFO and analyzed by the Chemometric Group of the University of Barcelona. (Gómez-Sánchez, A.; de Juan, A).

Second Harmonic Generation (SHG) imaging & two-photon excitation fluorescence (TPEF)

SHG 255

Emilio J. Gualda

Sources of Second Harmonic Generation

Non-centrosymmetric materials: chiral molecules, highly ordered structures.

Light-sheet fluorescence microsocopy

The sample is illuminated with a plane of light. Illumination and detection are perpendicular

- Low photobleaching
- Fast imaging
- Big samples
- Multi-view acquisition

Light sheet imaging of tessellated cartilage

w/ Júlia Chaumel, Maria Marsal, Emilio Gualda

What we've learned:

What we've learned:

 Autofluorescence is annoying

(except when it isn't)

What we've learned:

 Autofluorescence is annoying
 (except when it isn't)

 Label-free imaging is a powerful tool for lessaccessible tissues (period.)

THANK YOU!

- Frauke Leitner
- Pablo Loza-Alvarez, Jordi Andilla & Marina Cunquero
- Mélanie Debiais-Thibaud & the OOB Staff
- Paolo Gavaia & CCMAR

